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Abstract - Atmospheric pollution can be harmful to 
people’s health, especially in urban areas and close to 
chemical industries. In order to prevent and minimize the 
environmental impacts from these industries, it is convenient 
to use computational systems that simulate scenarios related to 
pollutant dispersion. In this work, a new analytical method is 
proposed to solve the correspondent mathematical model. The 
method uses two first order differential restrictions, which 
produce auto-Bäcklund transformations to the steady two 
dimensional advection diffusion equation. The main feature of 
this formulation is that the processing time to obtain the 
analytical solutions is significantly reduced. 

Keywords—Pollutant dispersion, Advection-diffusion equation, 
Exact solutions, Bäcklund transformations. 
 

I. INTRODUCTION 

 
In order to estimate the environmental damages caused by the 
emission of gas effluent from chemical industries, it is 
necessary to simulate several possibilities associated to 
theeffluent level and type of treatment to be employed in the 
process. The simulation of different scenarios allows the 
alternatives’ evaluation to minimize the environmental 
damage, also considering the cost related to each of them. The 
aim of minimizing the environmental damage is to keep the 
pollutant concentration under the values defined by the 
environmental rules. 

The simulations of these scenarios use mathematical models 
based on maps and tables which present the 
pollutantconcentration distribution close to the source. These 
models describe boundary problems based on the advective 
diffusive equation applied to atmospheric pollutant dispersion. 
Simulating several scenarios in order to choose the best 
alternative to the project requires resolution methods with the 
following features: 

- low processing time; 
- the possibility of simulating dispersion in subdomains 

with variable spatial resolution; 
- flexibility related to the region topography and to the 

prescribed boundary conditions. 
The best treatment choice of the gas effluents from an 

industry which is causing atmospheric pollution should 
minimize the environmental damage, obeys the environmental 
rules and requires a steady-state model in order to simulate 
typical scenarios.  

Another important problem in environmental engineering is 
the accidental gas discharge, as a consequence of a serious 
accident during the productive process. In this situation, the 
existence of an instantaneous discharge yields a transient 
problem whose solution can be obtained via methods which 
allow analyzingthe pollutant spatial and time distribution. In 
this case, the low processing time is a viability criterion, as 
deciding whether or not taking steps in order to minimize the 
environmental damage must be performed in a short period of 
time. It is important to verify if it necessary to advise the 
population about risks, to make people leave their houses, 
stores or industries immediately. All these options are based 
on the scenarios that describe the plume dispersion.  

At this point, it is important to mention that most of the 
methods employed to solve atmospherical pollution problems 
use the Gaussian Plume model. This model considers the 
pollutant plumes travel downwind when rising its source – the 
wind velocity is considered constant and uniform – which 
determines the main directions of the plumes’ path through the 
atmosphere [1][2]. 

In this model some hypothesis are performed in order to 
simplify the solutions field of the advective diffusion equation 
in its original form: 

The components of the velocity vector are considered 
constant and uniform, that is, they do not depend on time or 
space; 

The diffusive model is linear, neglecting the important 
effect of anomalous diffusion; 

The environment is considered infinity, so only second kind 
boundary conditions are applied close to soil. 

In this paper, it is proposed a pollutant propagation model 
based on a factorization of the advective diffusion equation, 
producing two first order partial differential equations. This 
model allows considering the nonlinearity that arises from the 
dependence of the diffusivity on the concentration and 
possible anisotropic terms that result from the dependenceon 
temperature. 

 The main advantage of using this factorized form is the fact 
that future implementationsor changes in the correspondent 
resolution method are not necessary, on the contrary that 
occurs with the original form of second order advection 
diffusion equation. This implies directly in four operational 
advantages: 

- a compact source code which allows simple depuration; 
- high performance of the resolution method based on the 

symbolic process; 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

ISSN: 1998-0140 233



- the analytic character of the obtained solution makes easy 
the physical interpretation of the phenomenon occurred on the 
simulated scenarios. Besides, it allows the application of 
several sensibility tests related to the thermodynamic 
variables, such as temperature and pressure, without a great 
computational effort; 

- as temperature and pressure can appear explicitly on the 
resultant solution, at first it is not necessary to divide the 
domain according to the planetary boundary layer features. 

The advection diffusion equation can be solved by 
numerical, analytical and hybrid methods [3], but the 
analytical solution for some problems of great interest in 
environmental engineering is not already known.Analytical 
solutions have several advantages: they are expressedin a 
closedform; the computational codes based on these kinds of 
solutions require less processing time, since there is a 
reduction of the number of operations to be performed, and 
then the amount of memory required to execute the routines 
decreases significantly. Besides, the source codes based on 
closed-form solutions are short and easy to depurate. 

The main numerical methods applied to solve the advection 
diffusion equation are based on discrete formulations, such as 
finite difference and finite elements, or spectral methods. It is 
possible to compare these methods features by listing their 
advantages and limitations when used to solve the proposed 
problem. 

The finite difference method requires a great computational 
effort to solve multidimensional transient problems. It is a 
consequence of the discretization scheme needed close to 
interfaces or in regions where high concentration, temperature 
or pressure gradients occur. The use of variable mesh density 
[4] or employing curvilinear coordinates to adapt the boundary 
geometry [5]-[7] are some of the alternatives used to reduce 
the computational processing time of this method.  

Systems based on finite elements are versatile to represent 
complex geometries because they have specialized generators 
of triangular and hexagonal grids that can be adapted to the 
region geometry. They also allow variable size to each 
element that composes the mesh and the boundary conditions 
can be easily applied [8]-[10]. However, to two dimensional 
problems, yield high order algebraic systems. 

   In order to combine the numerical methods versatility and 
the computational performance of the analytical formulations, 
exact solutions valid in wide subdomains can be applied. 
These solutions have a sufficient number of arbitrary constants 
to preserve the spatial resolution of the concentration maps 
and speed, without employing source codes that need high 
processing time. It happens because the algebraic systems 
resultant from the imposition of solution continuity over sub 
domains interfaces and the application of low order boundary 
conditions can be decoupled.  

These solutions can be obtained by hybrid formulations 
which search for particular solutions, and not the general ones, 
as the traditional analytical methods. The latter would be very 
restricted to describe a great number of scenarios, but when 
using symbolic computation, they are easy and fast applied. 
Such programs, developed in last two decades, are making 

possible the use of analytical tools in problems in which 
solving by traditional numerical methods would be very 
onerous [11]. 

These analytical tools are extremely helpful to solve 
nonlinear partial differential equations.They arise from 
methods based on the application of symmetries and mappings 
[12]-[14], as well as commutation relations [15]-[18]. 

There are partial differential equations whose factored 
forms obtained via order reduction yield solutions containing 
not only arbitrary constants, but also arbitrary functions of one 
or more variables[19]-[20]. These solutions are especially 
advantageous from the computational point of view, because 
they are usually described by compact expressions. So, they 
facilitate the boundary conditions application. 

The aim of this paper is a new analytical method is 
proposed to solve the mathematical model which describes the 
pollutant dispersion in atmosphere. The method uses two first 
order differential restrictions, which produce auto-Bäcklund 
transformations to the advective diffusive two-dimensional 
steady equation. 

This article is outlined as follows. In section 2, 
methodology and results are presented. In section 3, 
conclusion and recommendations for future work are drawn. 

 
 

II. METHODOLOGY AND RESULTS 

 
The advection diffusion equation which describes the 

pollutant dispersion in the atmosphere is 
 

2 2

2 2

C C C Cu v D
x y x x

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

,  (1) 

 
whereC(x,y) is the pollutant concentration, D is the pollutant 
diffusion coefficient in the atmosphere, uandv are the 
components of the velocity vector inx andy directions, 
respectively. Figure 1 illustrates the axes orientation of the 
coordinates system used in the proposal.  

 
 

 
Figure 1 – Coordinate system used in the proposed model. 
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Equation (1) can be factored as: 
 

C au C D
x y

∂ ∂
= +

∂ ∂
    (2) 

and 
 

,
C avC D
y x

∂ ∂
= −

∂ ∂
    (3) 

where ( )yxa ,  is an arbitrary function which belongs to the 

null space of the divergent operator. The application of 
thedivergent over the system represented by the system 
formed by (2) e (3), i.e., the sumof the expressions obtained by 
the partial derivation, yields: 

 

2 2

2 2
,

C C u vu v C
x y x y

C CD
x y

 ∂ ∂ ∂ ∂
+ + + = ∂ ∂ ∂ ∂ 

 ∂ ∂
+ ∂ ∂ 

               (4) 

 
which is an advection diffusion equation with the addition of 
the term represented by the product of the pollutant 
concentration and the velocity divergence. This term becomes 
zero for uncompressible flows. Thus, (4) is areasonable 
approximation to flows whose speed is inferior to sound 
velocity in the air.  

The system resolution requires a compatibility verification, 
which is done assuming that the mixedpartial derivatives of 
the concentration are equal. This restriction is obtained 
deriving (2)and(3) respect toy and x, respectively: 

 
2 2

2

C u C aD C u
x y y y y
∂ ∂ ∂ ∂

= + −
∂ ∂ ∂ ∂ ∂

                (5) 

 
and 
 

2 2

2
.

C v C aD C v
x y x x x
∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂

   (6) 

 
Making (5) and (6) equal, yields: 

 

.
2

2

2

2












∂
∂

+
∂
∂

−

=
∂
∂
⋅−

∂
∂
⋅+








∂
∂

−
∂
∂

⋅

y
a

x
a

y
Cu

x
Cv

y
u

x
vC

   (7)                                                          

 

 
The partial derivatives of C in relation to x and y, which are 

obtained from (2) and (3), respectively, are: 

 

au C
yC

x D

 ∂
− ∂∂  =

∂
    (8) 

 
and 

.

avC
C x
y D

∂ + ∂ ∂ =
∂

    (9) 

 
Finally, the substitution of the partial derivatives of C into 

(7) gives: 
 

2 2

2 2
.

v u a aDC u v
x y x y

a aD
x y

 ∂ ∂ ∂ ∂
− + + ∂ ∂ ∂ ∂ 

 ∂ ∂
= + ∂ ∂ 

          (10) 

 
In equation (10), the term that multiplies the concentration 

C is the vorticity. This term can be neglected when the model 
describes an inviscid flow, which is a good approximation to 
geographic scale. It is important to mention that the small 
eddies arising from the Kolmogorov cascade, which are 
responsible to high vorticity values close to solid interfaces, 
do not affect significantly the pollutant propagation. This local 
effect is considered by employing a turbulence model to refine 
the velocity field. Thus, equation (5) becomes: 

 
2 2

2 2
.

a a a au v D
x y x y

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

          (11) 

Once function a(x,y) must also satisfy equation (1), it can be 
defined as  
 

.a C or a DC= =            (12) 

 
This result means it is possible to build an iterative 

symbolic method in which a sequence of exact solutions for 
the advective diffusive equation is obtained, following a 
recursive process defined by:  

 

1
1

i i
i

C Cu C D
x y
+

+

∂ ∂
= +

∂ ∂    (13) 
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and 
 

1
1 .i i

i
C CvC D

y x
+

+

∂ ∂
= −

∂ ∂
         (14) 

 
In this case, the first definition of a in equation (12) was 

employed. It will be showed that the second definition is more 
convenient when dealing with the nonlinear version of the 
target equation. 

The main operational advantage of the proposed 
formulation over the methods based on symmetries that the 
first iteration, which corresponds to 0=i , does not require 
previously knowing an exact solution of the advection 
diffusion equation. It is enough to use the trivial solution to 
begin the process. In fact, setting C0=0 equations (13) and (14) 
becomes, respectively 
 

1
1

Cu C D
x

∂
=

∂     (15) 
and 

1
1 ,

CvC D
y

∂
=

∂     (16) 

a system whose solution is nontrivial for C1 . Indeed, 
separating variables and integrating, two exact solutions arise 
from these equations: 

1 ( ) ( )
u dx
D DC a y e a y e

Φ
∫= =

  (17)
 

 

1 ( ) ( )
v dy
D DC b x e b x e

Φ
∫= =

  (18)
 

 
Since the solutions must be identical, a(y)=b(x)=a0 (an 
arbitrary parameter), the first solution depends only upon the 
velocity potential: 

1 0
DC a e
Φ

=
     (19)

 
 
This featurerepresents a great advantage of the proposed 

formulation over the classical methods based on Lie 
symmetries. Notice that no previous knowledge about any 
exact solution is required to start the iterative scheme. 
 
 
II.1 – The nonlinear diffusion model 
 

The proposed formulation can be extended to nonlinear 
diffusion problems in which D depends directly on the spatial 
variables and indirectly on temperature and concentration. 
This generalization yields terms that represent the anomalous 
diffusion which occurs in regions of high gradient and low 

Laplacian of concentration, and it is originated from the 
definition of the diffusivity coefficient in microscale through 
the Master equation of StatisticalThermodynamics [21], an 
integral form from which transport equations are deduced. 
Approximations of the Master equation obtained via 
integration by parts yield Fick’s Law and its extensions.    

Depending on the number of terms considered in the 
recursive definition, terms related to isotropic or anisotropic 
diffusion can be produced. It happens because the two 
dimensional steady state advection diffusion equation in its 
vector form can be written as: 
 

( ) 2

.

V C D C D C
C D
⋅∇ = ∇ ⋅∇ = ∇

+∇ ⋅∇



  (20) 
 

In equation (18), the term DC ∇⋅∇  corresponds to the 
anomalous diffusion, it is calculated by the inner product 
between diffusion and concentration diffusion gradient. The 
diffusion gradient, as already mentioned, depends directly on 
spatial variables and indirectly on temperature and 
concentration. This result can be shown by applying the chain 
rule in order to redefine de diffusivity gradient:   
 

.C
C
DT

T
DD ∇

∂
∂

+∇
∂
∂

=∇   (21) 

 
The substitution of (21) into the two dimensional steady 

state advection-diffusion equation results: 
 

( )

( ) 2 .

C C Cu v D T C
x y T

D C C D C
C

∂ ∂ ∂
+ = ∇ ⋅∇ =

∂ ∂ ∂
∂

∇ ⋅∇ + ∇
∂  (22)

 

 
Although this nonlinear model being very difficult to solve, 
the corresponding first order equations are exactly the same of 
those obtained in the linear case. Thus, the only nonlinear term 
in the first order model is a product between D(C) and the 
concentration gradient. In this case, the first order equations 
can be recast by means of a change of variables. Equations 
(13) and (14) can be written as 
 

D C C f fu
C x y x y
 ∂ ∂ ∂ ∂

= + = + ∂ ∂ ∂ ∂    (23)

 

and 
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D C C f fv
C x y x y
 ∂ ∂ ∂ ∂

= − = − ∂ ∂ ∂ ∂    (24)

 

 
provided that there exists a function f(C) whose definition is 
obtained by means of the chain rule. Taking into account that 
 

f f f C C
x y C x y

 ∂ ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ ∂    (25)

 

 
it becomes possible to obtain a simple definition for f from 
any constitutive relation D(C) by direct comparison of 
equations (23) and (25): 
 

f D
C C
∂

=
∂

     (26)

 

 
Hence, a straightforward definition for f is achieved by 
integration: 
 

Df dC
C

= ∫
     (27)

 

 
The same definition would be obtained by comparing 
equations (24) and (25). In order to solve the nonlinear 
problem it becomes necessary to solve first the linear one, 
given by 
 

f fu
x y
∂ ∂

= +
∂ ∂

    (28) 
and 

f fv
x y
∂ ∂

= −
∂ ∂

    (29)

 

 
After finding f, the concentration distribution is obtained from 
(27) by fitting the function D(C) using any invertible model. 
For instance, if aquadratic model like 

 
2

1 2D b C b C= +
    (30)

 
 
is adopted, the integral in (27) is easy to evaluate, furnishing. 
an invertible relationship: 
 

22
1 2

bf b C C= +
    (30) 

 
When D depends upon C and T, there are extra terms which 
act as sources in the resulting auxiliary model. Thus, the 
auxiliary system results inhomogeneous, although remaining 
linear. It occurs because the extra terms are known, provided 
that the temperature profile is assumed to be previously 
determined. In this case f is defined as 
 

( )
Df dC g T
C

= +∫
   (31) 

 
because f also depends on C and T. Here, g is an arbitrary 
function which is also specified by direct comparison, as in the 
former case.  
 
 
II.2 – Formulation in curvilinear coordinates 

 
Equations (13) and (14) allow generating a sequence of 

exact solutions for the advective diffusive equation in 
Cartesian coordinates. Therefore, it is possible to obtain 
solutions containing many arbitrary parameters, depending on 
the number of iterations performed. These degrees of freedom 
allow satisfying realistic boundary conditions not only at 
simple boundaries, such as a flat plate. Thus,it is possible to 
ask:  if the local soil does not have a regular shape, how is the 
procedure to keep the proposeddiscretization? Isn’t it 
necessary torefine the partof the domain close to the solid 
interface? 

At this point, it is important to consider that  equations (13) 
and (14) can be easily adapted to a generalized curvilinear 
orthogonal coordinate system in which the new coordinates 
are stream function ( ψ ) and the velocity potential (φ )for the 

inviscid flow. These new coordinates are related to the 
components of the velocity vector by the following identities: 
 

yx
u

∂
Ψ∂

=
∂
Φ∂

=
    (32)

 

 
and 
 

xy
v

∂
Ψ∂

−=
∂
Φ∂

=
    (33)

 

 
Using curvilinear coordinates adapted to the domain 

geometry, it is possible to substitute the concentration spatial 
derivatives in (13) and (14) by means of the chain rule: 
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C C C
x x x

C Cu v

ϕ ψ
ϕ ψ

ϕ ψ

∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂
∂ ∂

−
∂ ∂

                           (34) 

 
and 
 

.

C C C
y y y
C Cv u

ϕ ψ
ϕ ψ

ϕ ψ

∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂
∂ ∂

+
∂ ∂

                               (35)

 

 
 
Redefining the concentration partial derivatives in equations 
(13) and (14) yields: 

 

1 1
1

i i
i

i i

C Cu C D u v

C Cv u

ψ ϕ

ϕ ψ

+ +
+

 ∂ ∂
= − + ∂ ∂ 

∂ ∂
+

∂ ∂
 (36) 

 
and 
 

1 1
1

.

i i
i

i i

C CvC D v u

C Cu v

ψ ϕ

ψ ϕ

+ +
+

 ∂ ∂
= − + ∂ ∂ 

∂ ∂
−

∂ ∂

 (37) 

 
Although the proposed formulation was built to solve the 

two dimensional steady-state advection diffusion equation, 
obtaining three dimensional and transient solutions from these 
expressions is a simple task. In fact, we step forward to extend 
the method to three-dimensional problems. In this case, the 
iterative scheme defined by equations (13) and (14) can be 
converted into a direct method for solving three-dimensional 
advection-diffusion equations in curvilinear coordinates. 
Defining now a = D C, which results in new source terms for 
equations (2) and (3), we obtain  
 

C Cu C D
x y

 ∂ ∂
= + ∂ ∂ 

   (38) 

and 
 

C CvC D
y x

 ∂ ∂
= − ∂ ∂ 

   (39) 

 
Summing (38) and (39) it yields 

 

( ) 2
Cu v C D
y

∂
+ =

∂
     (40) 

 
Subtracting the same equations it results 

 

( )
x
CDCvu
∂
∂

=− 2     (41) 

 
Replacing  
 

y
u

∂
Ψ∂

=
     (42)

 

 
and 
 

y
v

∂
Φ∂

=
     (43)

 

 
into (40), an auxiliary equation whose solution is readily 
obtained by integration is obtained: 

 

y
CDC

yy ∂
∂

=







∂
Φ∂

−
∂
Ψ∂

2
  (44)

 

 
 
Indeed, separating variables allows obtaining  
 









∂
Φ∂

+
∂
Ψ∂

=
∂
∂

yyDy
C

C 2

11

  (45)

 

 
which can be solved by direct integration, yielding 

 

)(ln
2

ln xa
D

C +
Φ+Ψ

= ,   (46) 

 
where a(x) denotes an arbitrary function of its argument. 
Therefore, an explicit solution is obtained: 
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DexaC 2)(
Φ+Ψ

= .     (47)   

 
Analogously, replacing   
 

x
u

∂
Φ∂

=
     (48)

 

 
and 
 

x
v

∂
Ψ∂

−=
     (49)

 

 
 

into (21), it results 
 

x
CDC

xx ∂
∂

=







∂
Ψ∂

+
∂
Φ∂

2
  (50)

 

 
 

or 
 









∂
Φ∂

+
∂
Ψ∂

=
∂
∂

xxDx
C

C 2

11

,  (51)

 

 
whose integration results 
 

)(ln
2

ln yb
D

C +
Φ+Ψ

= ,  (52) 

 
where b denotes an arbitrary function of y. Since the 
respective solution, namely 

 

DeybC 2)(
Φ+Ψ

=
    (53) 

 
must be identical to the one defined by (27), a(x) = b(y), so the 
arbitrary functions reduce to a parameter. In fact, 
differentiating both sides of a(x) = b(y) respect to x and y, it 
results, respectively, a’(x) = 0 and b’(y) = 0, so the 
concentration distribution is defined by  

 

DeCC 2
0

Φ+Ψ

=      (54) 

 
In this equation, the arbitrary parameter C0 stands for the 

concentration at the point where the charge is disposed.  

Notice that the former solution is not restricted to two-
dimensional problems, since the stream function and the 
velocity potential can be expressed as scalar functions of x, y 
and z. Hence, the proposed formulation generates not only an 
iterative scheme to produce a sequence of exact solutions 
representing concentration distributions for two-dimensional 
advection diffusion equations, but also a direct method to 
produce three dimensional concentration distributions. 
Moreover, the three-dimensional solution given by (54) 
automatically satisfies third kind boundary conditions at the 
solid interface:  

 

kCC
=

Ψ∂
∂

at 0Ψ=Ψ
   (55)

 

 
 
In this equation, Ψ0 is a fixed value for the stream function, 

which may represent any solid interface. This is the most 
realistic boundary condition to be prescribed in this system of 
curvilinear coordinates. This constraint states that the pollutant 
does not suffer total reflection at the boundary, but is also 
partially retained in the soil. Replacing (55) into (54), it results 

 

DD eKCe
D

C
2

0
20

2

Φ+ΨΦ+Ψ

=
   (56)

 

 
which implies that 

 

D
k

2

1
=

     (57)
. 

 
The former result is a direct consequence of the proposed 

factorization. The system of auxiliary first order partial 
differential equations obtained from the advection diffusion 
model are, in certain sense, equivalent to the Fick´s law. Thus, 
the coefficient in the boundary condition must be related to the 
local mass diffusivity. In other words, if one prescribes the 
third kind boundary condition instead of employing the 
solution given by (34), an analogous result is achieved. Once 
the equations 

 

ψϕ

ϕψ

∂
∂

+
∂
∂

+







∂
∂

−
∂
∂

=

CuCv

CvCuDuC

   (58) 

 
 
and 
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C CvC D v u

C Cu v

ψ φ

ψ φ

 ∂ ∂
= − + ∂ ∂ 

∂ ∂
−

∂ ∂

  (59) 

 
are valid for the invariant solution, i.e., after removing the 
index i from the equations which defines the iterative scheme), 
the boundary condition (55) can be applied directly over (58) 
and (59):  

 

ukCCv

CvukCDuC

+
∂
∂

+







∂
∂

−=

ϕ

ϕ
  (60) 

 
and 
 

.
ϕ

ϕ

∂
∂

−

+







∂
∂

−=

CvukC

CuvkCDvC

   (61) 

 
These equations leads to the following definitions for the 

longitudinal derivative of the concentration function: 
 

( )[ ]
( ) uC

Dv
DkC

−
+−

=
∂
∂

1

11

ϕ
   (62)

 

 
and  
 

( )[ ]C
Duv

vDvukC
+

−+
=

∂
∂
ϕ    (63) 

 
Since both definitions must be equal, 

 

( )[ ] ( )[ ]
( ) u

Dv
Dk

Duv
vDvuk

−
+−

=
+

−+
1

11
  (64) 

 
which leads to a different definition for k: 
 

 

Notice that the particular case D=1 does not produce a 
singular definition for k, but a reduction to a numerical 
parameter. In this case k=1/2, which means that the deposition 
rate of the pollutant along the solid interface is independent of 
the velocity field.  
 Another definition for this parameter can be obtained 
by defining the source term as a = DC. In this case, equations 
(58) and (59) becomes, respectively 
 

Ψ∂
∂

=
CDC 2      (66) 

 
and 

( ) 







∂
∂

−
Ψ∂
∂

+=
ϕ
CCvuDvC .   (67) 

 
Applying the third kind boundary condition over these 
equations, it results 
 

DkCC 2=      (68) 
 
which furnishes k=1/2D and 
      

( ) 







∂
∂

−+=
ϕ
CkCvuDvC ,  (69) 

 
which reduces to an ordinary differential equation that 
prescribes the behavior of the concentration profile along the 
air-soil interface:  
 

( )vuD
vCkCC
+

−=
∂
∂
ϕ .   (70) 

 
Since the no penetration boundary condition must be taken 

more seriously than the classical no slip condition at the solid 
interfaces, this equation does not necessarily contain a 
singularity. Indeed, while the pollutant do not cross the air- 
soil interface, but only eventually penetrate by diffusion in 
porous media, the no penetration condition can be considered 
a realistic constraint. Nevertheless, there is a simple physical 
argument to refute the classical no slip condition of fluid 
mechanics for scenarios involving gas flow. Suppose that the 
first molecular layer of a fluid adheres to the solid interface. 
Hence, this monomolecular film would cover the soil 
interface, so it could be excluded from the desired domain. 
Obviously, the second layer of molecules does not adhere to 
the first. Moreover, in a free molecular flow there are much 
more deviations caused by collisions than electromagnetic 
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interactions between molecules, so the no slip condition is not 
a reasonable constraint for gas flow.. 

The former argument suggests that the typical behavior 
prescribed by equation (70) is approximately exponential. This 
behavior is easy to visualize if u and v are locally regarded as 
small fixed parameters: 
 

D
CkkCC 1−=

∂
∂
ϕ .    (71) 

 
In this equation, the extra parameter, given by 

 

vu
vk
+

=1      (72) 

 
is a weak function of the velocity potential. Therefore, 
equation (71) can be written as 
 

CkC
2=

∂
∂
ϕ      (73) 

 
with 
 

D
kkk 1

2 +=  .    (74) 

 
Equation (73) justifies the exponential behavior of the 

concentration profile along the interfaces. 
Aside from considerations about the best definition of the 

parameter k, such as any argument about the validity of the 
classical hydrodynamic boundary conditions, the numerical 
value of kcan be easily obtained experimentally. The crucial 
idea here is that methods based on factorization produces 
realistic solutions because the corresponding system of 
auxiliary differential equations obeys physical boundary 
conditions. Thus, these methods probably can be applied to 
other areas of interest in transport phenomena. The general 
idea behind this argument is described as follows. 

When one search for a specific Lagrangian to describe a 
given process, such as scattering or chemical reactions, the 
resulting Euler-Lagrange equation contains polynomial 
nonlinearities which defines the interaction between particles. 
An analogous situation occurs in macroscopic scale, when one 
defines material derivatives in order to account for advection 
terms in transport equations. In this case, when the chain rule 
is employed to define the velocity field, the parameterization 
of a path followed by each molecule of the corresponding 
fluid is implicitly assumed. In both cases the medium is 
ultimately considered as composed by particles which are 
supposed to preserve their own identity along time.  

This assumption must not be taken so seriously for 
scattering processes, and chemical reactions, where the 
concepts of fermions and bosons seems to be much more an 

arbitrary way to distinguish particles and fields than a 
consistent form of thinking about statistical  physics.. 
Moreover, this point of view often induces to choose some 
specific variables as “natural candidates” for unknown 
functions to a given problem. This choice often generates 
nonlinearities which otherwise would not necessarily appear in 
some alternative formulations. For instance, the Helmholtz 
equation can be viewed as an advection diffusion model where 
the solid interfaces acts as “sources of vorticity” distributed 
along the flow. If the kinetic energy were chosen as the 
unknown variable instead of the vorticity function, the 
interfaces would be considered as sinks, so the physical 
interpretation of the corresponding scenario would be 
essentially equivalent. Nevertheless, from the operational 
point of view, the last interpretation is advantageous, because 
advection terms are not expected to arise in a hydrodynamic 
model based on kinetic energy. Consequently, the resulting 
equation should be easily converted into a linear model whose 
solutions are mapped into ones of the original problem by 
applying nonlinear operators. 

If one concerns about symmetries and conservation laws, 
the only practical limitation of this approach is that it ever 
produces only particular solutions of the original problem. 
However, this is not a serious limitation, once the subspace of 
solutions can be easily generalized using symmetries admitted 
by the own target equation.  

In future works, we step forward by showing that the 
Bäcklund-type transformations are more than a mapping 
procedure. Behind these transformations arises a systematic 
way to obtain new dependent variables which furnishes a 
useful point of view for simplifying the way of reasoning 
about modeling and solving nonlinear problems. Our work is 
now focused in showing that exact solutions of the Helmholtz 
equation can be obtained by factorization and mapping into a 
linear diffusion model whose auxiliary dependent variable 
represents a function of the kinetic energy per unit mass. 

III. CONCLUSION 

A reduction of order applied to advection-diffusion 
equations presents some relevant advantages over 
formulations based directly on Lie group analysis: 
 
i) It is not necessary to deduce and solve the determining 
equations used to obtain the symmetry group generator 
coefficients. [12]. 

 
ii) The method does not require the application of rules for 
manipulation of exponential operators [13] in order to obtain 
the symmetries in explicitform thatisexpressed in terms of 
variable changes. 
 
iii) A priori knowledge of any exact solution to the target 
equation is not needed to start the iterative process. 
 
iv)  The formulation also produces three-dimensional solutions 
by direct integration, once the stream function and the 
potential velocity can also depend on z. 
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v) The factorized form keeps the same when D=D(C), so the 
proposed formulation is also valid for nonlinear diffusion 
problems. 
 
vi) The time processing required to obtain a sequence of exact 
solutions is virtually negligible, so any low cost domestic 
computer can be employed to solve the target equation. For 
instance, exact solutions containing four arbitrary parameters 
are generated in 30s in Maple 13, using an obsolete CPU 
(AMD Sempron 3100). 
 
vii) The constitutive relations D(C,T) and the partial 

derivatives
C
D
∂
∂

 and 
T
D
∂
∂

can be obtained by the definition of 

the diffusion coefficient in microscale:  
 

,
2

τ
lD =                  (75) 

 
Wherel is the mean free path and τ is the elapsed time between 
two successive collisions. Observe that l depends on 
concentration, while the quotient  
 

l
τ

,      (76) 

 
which represents the averageof the free velocity gas 
molecules, is a function of the temperature. Thus, Kinect Gas 
Theory can be used to obtain the diffusion coefficient which 
depends on temperature and pressure, or on temperature and 
concentration.Consequently, it becomes possible to estimate 
the mass diffusion coefficient even for components whose 
physical properties are not available in literature. 
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